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Abstract' 

This paper presents a gesture recognition system for visualization navigation. Scientists are interested 

in developing interactive settings for exploring large data sets in an intuitive environment. The input 

consists of registered 3-D data. A geometric method using Bezier curves is used for the trajectory analysis 

and classification of gestures. The hand gesture speed is incorporated into the algorithm to enable correct 

recognition from trajectories with variations in hand speed. The method is robust and reliable: correct 

hand identification rate is 99.9% (from 1641 frames), modes of hand movements are correct 95.6% of the 

time, recognition rate (given the right mode) is 97.9%. An application to gesture-controlled visualization 

of 3D bioinformatics data is also presented. 

EDICS: Primary: 2-MOTD Motion Detection and Estimation, Secondary: 2-SEQP Image Sequence 

Processing. 
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1 introduction 

1.1 Motivation 

Large and complex data sets are produced at a more rapid pace than tools and algorithms for their 

processing, analysis, and exploration. For example, the National Institute of Health’s (NIH) Visible Human 

project generated data sets of a single 3-D volume that consists of 12 billion elements. Nearly a terabyte of 

satellite data is produced on a daily basis. Advanced physics simulation at Lawrence Livermore National 

Laboratory (LLNL) is generating large data sets, which are expected to increase to one terabyte every five 

minutes by 2004. 

Among the tools used to help explore and understand large data, visualization aids in gaining greater 

insight into important physical parameters (such as temperature, height, stress, velocity or pressure) and 

in finding anomalies. Such anomalies often are not obvious to scientists during the automatic localization 

but are easily picked out with visual data exploration. Correct representation can drastically reduce the 

time needed for the analysis. As data becomes huge, it requires more time for processing. Even the latest 

supercomputers may require days or even weeks for computations. This makes real-time visualization 

mission-critical, since interesting properties can show up which allow scientists to adjust parameters of 

computation and restart it, if needed. Visualization is integrated into the process and is no longer just the 

last step. 

State-of-the-art visualization displays keep pace with the data requirements. For instance, one of 

LLNL’s “power walls” (Figure l(a)) is a 15-projector system that displays approximately 19.7 million 

pixels on a 16- by 8-ft screen. Systems like this allow for detailed data analysis and team collaboration. 

However, applying even simple commands to the data (such as zoom, rotation and translation) requires a 

secondary, or “background,” communication process between scientists working with the data (see the two 

standing by the screen in Figure l(a)) and the “operator” responsible for executing selected commands 

(sitting, left). This reduces productivity of the team and affects quality of presentations. 

Therefore, scientists are interested in developing new, interactive settings for exploring their data in 

a niore intuitive environment. A gestiire-recognitior! system can interpret conimaiids and supply data 

^*I 



Figure 1: (a) A 15-projector display with a total resolution of 6,400 by 3,072 used for interactive applica- 
tions. (b) An example of interactive manipulation of isosurface and volume rendering parameters. 

Since the system is being developed as a front end for gesture-controlled, largescale visualization and 

virtual reality manipulation, certain requirements and complications are apparent. First, 3-D information 

is required, not necessarily at  a video-frame rate, but at least a few times per second (optimal parameters 

should be determined as a result of testing on a large group of people). Second, traditional techniques such 

as background subtraction cannot easily separate a figure from the background, since the entire body of 

the interacting person (not only arms or hands) is moving. Moreover, interaction takes place in front of the 

screen where the data is updated dynamically and, therefore, the background changes most of the time. 

Third, motion of the interacting person should be natural and should result in intuitive data manipulation, 

where intuitive means easily learned and fast to provide immediate results. 

1.2 Previous Work 

Gesture tracking and recognition are important research domains. Traditional approaches to tracking 

typically relied on segmentation of the intensity data, using motion or appearance data. A majority of the 

methods began by segmenting the human body from the background. For example, in “blob approaches,” 

people were modeled as a number of blobs resulting from pixel classification based on their color and 

position in the image. Wren et al. [l] achieved segmentation by classifying pixels into one of several 

models, including a static world and a dynamic user represented by gaussian blobs. Yang and Ahuja [a]  

u s ( ~ l  s k i n  color and the  geonict.ry o f  palin and face regions for wgiiicntat,ion stages of their srstciri. A 

Gi\IiSSiitl1 rriixtiire (wit,h pararnc’t,cirs cist,irnat,cd hy a n  EM itlgorit l i i~~) niodclcd the distribiitiori of skimcolor 



pixels. Rehg and Kanade [3] used a 3-D hand model to track a hand. They compared line features from the 

images with the projected model and performed incremental state corrections. Similar work was presented 

by Kuch and Huang [4], in which the synthesis process could fit the hand model to any person’s hand. 

Cutler and Davis [5] segmented the motion and computed a moving object’s self-similarity (including 

human motion experiments). 

A significant amount of work is being performed in the area of recognition, where Hidden Markov models 

(HMMs) are often employed successfully [ 6 ,  7, 81 by allowing researchers to address the highly stochastic 

nature of human gestures. Yacoob and Black proposed parameterized representation of human movement 

in the form of principal components [9]. Bobick and Wilson [lo] treated gesture as a sequence of states 

and computed configuration states along prototype gestures. Yang and Ahuja [2] used motion trajectories 

for recognition. Grzeszcuk et al. [ll] ’described classification algorithm with statistical moments of the 

binarized gesture templates. Hong et al. [12] treated each gesture as a finite state machine (FSM) in the 

spatial-temporal space; FSMs were trained using k-means clustering. A preliminary trained neural network 

was used by Sat0 et al. [13]. Hongo et al. [14] performed recognition by a linear discriminant analysis in 

each discriminant space by using four directional features. Approach described by Yoon et al. [15] derived 

features from location, angle, and velocity and employed a k-means clustering algorithm for the HMMs. 

Gesture contour representation and alignment-based classification were proposed by Gupta and Ma [16]. 

A review by Aggarwal and Cai [17] classified approaches to human motion analysis, the tasks involved, 

and major areas related to human motion interpretation. A review by Pavlovic et al. [18] addressed main 

components and directions in gesture recognition research for human-computer interaction (HCI). 

2 Framework 
2.1 Overview 

In this section, we describe the method for recognizing three gesture types: rotation, zoom, and translation. 

Given the 3-D trajectory of the manipulating hand, we fit a Bezier curve to the trajectory. The curvature 

of the curve is used to determine the gesture. 

Gcsture recognit,ion involws fivc strps: 

. .. 
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Figure 2: Overview of gesture recognition. 

2. Identifying the beginning of the gesture, 
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5. Recognizing the gesture by fitting the curve to the 3-D trajectory. 

These steps are described in separate sections of this paper. Please see Figure 2 for an overview of the 

recognition process. 

2.2 Manipulating Hand Detection 

This presents a brief overview of the process. For more details, please see [20]. 

Detecting skin regions. To identify a hand involved in virtual object manipulation, the color image is 

converted to the SCT color space to reduce lighting artifacts [19]. Skin pixels are selected with a minimum 

distance classifier using Mahalanobis distance (skin statistics is collected off-line). After the noise removal 

(by a sequence of erosions and dilations), the skin image is segmented using connected component analysis. 

Small regions or unlikely shapes are removed from further consideration. 

Identifying the hand involved in manipulation. We assume that the hand gesture occurs in front 

of the body. Therefore, the skin region closest to the camera is identified as the manipulating hand. We 

determine the 3-D location of the region by using histogram-based noise filtering, where all smaller bins 

are considered noise [20]. Virtual commands do not happen all the time. Hand gestures can be classified in 

general as object manipulations and other hand movements. Selection of meaningful gestures is described 

next. 

2.3 Gesture On, Gesture Off 

We recognize the gestures for manipulation of virtual objects by “grabbing” them. Both grabbing and 

releasing are detected by checking the area change of the hand. If the area has decreased, then the hand is 

closed and therefore the object is grabbed. If the area has increased, then the hand is opened and therefore 

the object is released. Since the speed of the hand closing and opening could vary, we build a history of 

hand area change. We accumulate the area change on the past three frames. Grabbing is detected when 

the accumulated change of area is less than -75%, and releasing is detected when the accumulated change 

is greater than 75%. Note that the negative area change means the area decreased. 

Changes due to small movement or noise around the hand area could occur, and these should not be 

coiiritcd t,oward thc dctermination of grabbiiig and rclt3asitig. Tliei eforc,. we igriorc. chiitigc o f  a r m  siiiallcr 

than 15%. 
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2.4 Bezier Curves 

Representation and Propert ies  

A Bezier curve uses control points to represent a curve. 

n 

i=O 

Points along a curve are determined by using u, 0 5 ' 1 ~  5 1. n indicates the degree of curve which is one 

less than the number of control points. Pi is the ith control point where P(0) = C(0) and P(n)  = C(1). 

Bi,n is a Bernstein polynomial. 

n! 
i!(n - i)! Bi,n = nZ(1 - uIn-Z 

We use Bezier curves with three control points describing quadratic curves. The Bernstein polynomials 

with n = 2 are shown below. 

B0,2 = (1 - u ) ~  

B1,2 = 2 4 1  - u) 

B2,2 = u2 

Therefore, the equation for the Bezier curve with three control points is simplified. 

C ( U )  = (1 - u)2 + 2 4 1  - u) + u2 (6) 

Curve Fitting - General Method 

We use the curve approximation method described by Piegl and Tiller [21]. We describe the method 

for fitting curves with n + l  control points with m+l  data points. The simple solution for three control 

points is shown in Appendix A. 

Given a set of 3-D points to 

is computed using the length of 

m 

IQI = IQi - Qt- i l  

(3) 

(4) 

( 5 )  

fit Qo, . . . , Qm, we estimate control points Po, . . . , Pn where m > n. Uk 

the curve up to Q k .  

i= 1 



We first set PO = G(0) = Qo and P n  = C(1) = Qm. We then estimate the unknowns which are the 

intermediate control points 9,. . . , P,-l such that E is minimized. 
m-1 

k= 1 

For the system with (n+l )  control points, the estimation of P becomes solving 

(NTN)P = R 

N = [  ; 
Nl,p(Gl) . . ' Nn - 1 , p  ( fi 1 1 

N ~ , p ( f i m - ~ )  . . . Nn-l,p(Gm-l) 

where R is the vector of n - 1 points 

Nl,p(fil)Rl + * * *  + Nl,p(fim-l)Rm-l 

Nn--l,p(fil)Rl + - * + Nn-l,p(iim-l)Rm-1 

R =  [ 
Each Rk is defined as 

P is a matrix with unknown control points in each row where z, y, and z are stored as a separate element. 

2.5 Recognition 

Good Input? The gesture is recognized using the trajectory between grabbing and releasing. However, 

the gesture is ambiguous if the movement is too small. Also, if the trajectory contains abruptly sampled 

or too few points, computing the shape of trajectory becomes difficult. 

We consider the gesture to be invalid if the trajectory is shorter than 20cm, if the trajectory is irregularly 

sampled, or if the trajectory contains less than six points. We selected the minimum number of points to 

be six because (1) we observed that at least six points were needed to robustly fit to three control points, 

and (2) we assumed that the gesture roughly requires one or two seconds and the frame rate was close to 

six frames/sec 



there are no items in any of the three bins, we consider the trajectory to be invalid. However, a natural 

variability in gesture velocity is allowed. U k  can adjust for different speeds/intervals between points Qk. 

u is the sampling parameter which could range between [0, 13 to select a point on a curve by using C ( u ) .  

C(0) is the beginning of the curve, and C(1) is the end of the curve. Choosing u k  (which is the u for the 

kth point) by using the distance between two consecutive points is equivalent to adjusting the different 

speeds along the gesture. 

Figure 3: Selected frames for three sample gestures: zoom (top row), translate (mid row), and rotate 
(bottom row). Hands used for manipulation are (automatically) detected and shown in natural skin colors, 
whereas the rest of each image is displayed as greyscale for visualization. 

Determining Gesture Types. A geometric (rather than statistical) model is motivated by the 

nature of the application (representation of visualization operations) and its requirements (robustness and 

simplicity). In order to allow for the variation of the hand speed within a gesture and between gestures, the 

T& in a Bezier curve description is computed using the distance that the hand travels between the frames. 

Using its angle and direction, the trajectory is classified into rotation, translation or zoom. Examples 

of three gestures are shown in Figure 3. The inside angle at the middle point is used to recognize the 

gcstiire from 3-D tr;tJect,ory (see Figurc 4) .  Using two end control points (Po, P2) and thc middle point 

8 
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Figure 4: Determining gesture type using Bezier curve. 

(C(0.5)), we compute the inside angle of triangle inside the curve (e) by 

m -  

We classify “flat” trajectory as translation or zooming while “curved” as rotation. The inside angle 

would be smaller if the curve has high curvature. So if 6’ 5 loo”, then we classify the gesture as rotation. 

Otherwise, the gesture is translation or zooming. If the movement was mostly in z direction, then we 

recognize it as “zooming” or otherwise “translation.” To do so, we compute the ratio of the change of 

depth between first and last control points vs. distance between them. 



If the distance is greater than 0.5 then it is classified as zoom, otherwise it would be a translation. Since 

the method is geometry-based, the entire trajectory is recorded and can be used to recognize gestures by 

the hand speed. 

Figure 5: Subjects participated in the experiment. Note the variations in lighting condition, difference in 
skin tone, and a complex background. 

3 Results 

Experimental setup consists of a Digiclops system (Point Grey Research, [22]) on a Pentium 4 PC 1.5GHz 

with 512 MB RAM. The system is based on a triangulation between three cameras. Since the camera 

parameters (their relative positions, the focal length and resolution) are fixed, re-calibration is not usually 

required. The results are organized in four sections: manipulating hand detection; manipulation mode 

detection; gesture recognition; and overall performance. Testing data set includes 100 gestures, 226 ma- 

nipulation modes, and 1641 frames (with a 320 x 240 image size) of manipulating hands of four people. 

We have presented initial manipulating hand tracking results on a smaller data set in [20]. The data was 

captured in an indoor setting with varying natural light and a complex background. Four different people 

with various skin tones participated in the experiments (refer to Figure 5). 

3.1 Manipulating Hand Detection 

The results of detecting manipulating hands (described in Section 2.2) are shown in Table 1. We detected 

the manipulating hand correctly in 1639 of 1641 images (99.9%). Two incidences of misdetection are shown 

in Figure 6. In both instances, detection failed because the depth readings of the manipulating hand and 

face were identical. In the upper image, the face was a t  [0.0323449, -0.35879, 1.727481 and the hand was at 

[-0.465777, -0.0511539, 1.727481. For the lower image, the face was at [0.0323449, -0.35879, 1.727481 and 

the hand was at, [-0.360104, 0.0452926, 1.727481. In  these two cascs, thc Iiistogram-based range filtering 

was I i o t ,  cflix.t,ivc emugh to robiist,ly cornpiite tlie 3-D location. 



data set 

Figure 6: Two incidences of misdetection of 
(mid), and detected manipulating hand (righi 

correct incorrect 
manipulating non-manipulating face non-skin total manipulating 

hand hand other body parts regions hand 

i manipulating ham 
t) are shown. 

7 
8 
9 
10 

total 
total (%) 

a. 

200 0 0 0 200 
198 0 2 0 200 
199 0 0 0 199 
200 0 0 0 200 
1639 0 2 0 1641 
99.9 0.0 0.1 0.0 100.0 

The color images (left), skin regions 

3.2 Manipulation Detection 

Evaluating Manipulation Detection. Each manipulation mode is defined by the starting frame, end 

frame, and its mode (on or off). We evaluated the manipulation mode detection in four categories: correct, 

incorrect, over, and under detection as shown in Figure 7. Detected manipulation mode on and off is shown 

as a biir as the frame number increasc from Icft to right. Upper bar is for Algorithm Detected (AD) and 

lower biir is for Groiind Truth ( G T ) .  

11 
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Figure 7: Evaluating Manipulation Mode Detection. 

Four possible outcomes are classified below: 

a Correct detection. AD and GT detections with at least 90% overlap in duration and same mode. 

a Incorrect detection. AD and GT detections with at least 90% overlap in duration but different 

mode. 

a Over detection. Multiple AD detections with at least 90% overlap in duration with one GT 

detection with same mode. 

a Under detection. Multiple GT detections with at least 90% overlap in duration with one AD 

detection with same mode. 

Results. The results of manipulation mode detections are shown in Table 2. The method correctly 

identified 216 of the 226 modes (95.6%). All five underdetections were due to missing the manipulation 

mode change (hand opening or closing). For these five missed detections, the area change was 63%, 74.7%, 

71.4%, 68%, and -54%, which did not meet the threshold of +/-75%. The hand detections of 63% and 

-54% are shown in Figure 8. 

12 



total 216 0 0 5 
total (%) 95.6 0.0 0.0 2.2 

Figure 8: Two misidentifications of Manipulation Modes. Upper with area change of 63% and lower with 
area change of -54% do not meet the threshold of +/-75%. 

226 
100.0 

1. 

. -0.05 

-0.15 

Figure 9: 3-D trajectories of two incorrectly recognized gestures. 
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Table 3: Gesture Recognition Performance 

1 

I data set 1 1  correct 11 incorrect II total 
zoom translation rotation 

7 0 0 0 7 ~ 

2 
3 

14 0 0 0 14 
6 0 0 0 6 

4 
5 
6 
7 

I 

10 0 0 0 10 
4 0 0 0 4 
13 0 0 0 13 
12 0 0 0 12 

8 
9 

7 0 0 0 7 
8 2 0 0 10 

3.3 Gesture Recognition 

10 
total 

In order to compute the results of gesture recognition, we have taken the correctly identified manipulation 

modes and checked the recognition rate. Note that recognition rate is evaluating the goodness of recogni- 

tion rate by using Bezier curve representation. The overall performance of evaluating the correctness of 

recognition versus intended recognition is shown in the next section. The results are shown in Table 3. 

The algorithm identified gestures correctly 93 out of 95 times (97.9%). For the two incorrect recognitions, 

the zoom gestures were recognized as rotation by estimating the inner angle (e) as 104.9 and 125.124. 

The trajectory plots of two gestures are shown in Figure 9. The reason for the failure was due to using 

three-control points bezier curve, and the curves in question were too concave to be adequately described 

by three control points. 

Motion trajectories for defined object manipulations in a 3-D space are shown in Figure 10. It is appar- 

ent that zoom gesture (blue) represents a significant change in 2 coordinate relative to the almost constant 

depth during the translation (green), which is a predominantly X-axis motion. Rotational semicircle is 

also well-defined. Trajectory analysis is domain specific. Currently, we are working with HCI experts to 

determine necessary sets of gestures for controlling different visualization packages. 

12 0 0 0 12 
93 2 0 0 95 
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u. I 0.1 
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Figure 10: Motion trajectories in a 3-D space. 

3.4 Overall Performance 

Overall performance is evaluating the number of correctly recognized gestures vs. the number of intended 

gestures (shown in Table 4.) The algorithm correctly recognized 93 out of 100 intended gestures. Note that 

in the previous section, only 95 gestures were considered because 5 were not detected due to misdetection 

of manipulation mode as shown in section 3.2. Table 4 also shows the reasons for five non-correct classi- 

fications of gestures. We have divided those five incidences into “incorrect” if the gesture was incorrectly 

recognized as wrong gesture and “missed” if the gesture was not detected. “Incorrect” and “missed” are 

then subdivided into failures of three steps: “hand” (manipulating hand detection), “mode” (manipulating 

mode detection), and “recognition” (gesture recognition). Two gestures were incorrectly recognized due 

to a small angle as mentioned in Section 3.3. Three gestures were missed because the mode detection 

underdetected the gesture as mentioned in Section 2. The system executed at the rate of 5.5 frames/sec. 

3.5 Application to Virtual Manipulation 

Figure 11 shows the application of recognized gestural commands to a small virtual object. Complex virtual 

objects (3D views of two chromosomes) have been selected to provide a visual illustration of discussed 

opcxations. ‘Yhe dat.;tsct shown reprc:swit,s visiializatiorl of 3D reconst,ruct.ioil o f  fruit fly C ~ I - O I I ~ O S O I ~ ~ C S  l)ased 

on 2D sliccs of  CT xaii irrmgcs. The results of thlcc sequentially applicd virtual r ~ ~ ~ ~ ~ i i p ~ i l a t i o ~ i s  throiigll 

I 5 



data set correct incorrect 
hand I mode I recognition 

gestures of rotation, zoom, and translation are shown in Figure 11. Both recognition and visualization are 

in real-time. The latter part is written in OpenGL. Real-time visualization of large data sets represents a 

significant bottleneck, which is currently under investigation by various research p-oups. 

missed total 
hand I mode I recognition 

3.6 Environment (Two-Handed) Operations 

So far we discussed only basic visualization commands. However, the technique described is easily ex- 

pandable to larger sets of gestures covering more advanced data manipulations. For example, environment 

operations are applicable when several objects have to be affected. Such operations include: 1) (environ- 

ment) stretch, 

2) (environment) squeeze, 

3) (environment) bend, 

4) (environment) translation, 

5) (environment) rotation, and 

6 )  (environment) zoom. 

All of these manipulations require two-handed gestures. When two simultaneous "ON" switches of the 

manipulation mode occur close in the depth, this signals that an environment command is being processed. 

Gestures (4)-(6) are defined similarly to their respective one-handed equivalents. They are distinguished 

fro111 ( 1 ) - ( 3 )  by having an approximately constant dist,nncc: betwcm hands (Figiirc 12) .  Gesture (3 )  is 

c:liar;i.c.t,erized by the angle h t , w e e n  tra,jec:tories> while (1) ; t ~ i t l  (2) occiir along a straiglit. lint. and differ 



Figure 11: Example of Virtual Manipulation Application. Three sequential manipulations are shown. Red 
arrows are superimposed on images to enhance the appearance of gesture trajectories. 

only in direction. Appearance of a virtual environment after a horizontal stretch operation is shown in 

Figure 13. 

17 



pri _- I= -r-- 

i 

? - -  

r -- 7 
i I 

Figure 12: Frame samples for two-handed gesture: 
zoom, bend, stretch and squeeze. 

4 Conclusions 

(top to bottom, respectively): rotation, translation, 

Visual data exploration has tremendous capabilities for revealing properties and abnormalities in large 

data sets. This paper described a gesture recognition system for visualization navigation. Scientists are 
18 



Figure 13: Appearance of a virtual environment after a horizontal stretch operation. 

interested in developing interactive settings for exploring large data sets in an intuitive environment. The 

input consists of registered 3-D data. Bezier curves are used for trajectory analysis and classification 

of gestures. A geometric (rather than statistical) model is motivated by the nature of the application 

(representation of visualization operations) and its requirements (robustness and simplicity). Since the 

method is geometry-based, the entire trajectory is recorded and can be used to recognize gestures by the 

hand speed. Variations in the hand speed within a gesture as well as between gestures are normalized by 

parameterizing the points along the trajectory to a Bezier curve description with respect to the hand speed 

at each frame. The method is robust and reliable: correct hand identification rate is 99.9% (from 1639 

frames), modes of hand movements are correct 95.6% of the time, recognition rate (given the right mode) 

is 97.9%. An application to gesture-controlled visualization of 3D bioinformatics data is also presented. 

Future work includes defining a larger set of gestures based on the basic movements already analyzed, 

using gesture speed for classification, and creating actual hand models for detection of smaller, more subtle 

gestures. 
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A Appendix Least Squares Fitting of 3-D Bezier Curves 
With three control points, we have only three unknowns: 2, y, and z in PI (the middle control point). 

First, the nth-degree Bezier curve is described as 
n 

C ( U )  = Bi,n(U)Pi 
i=O 

With three control points, 

 NO,^ = B 0 , 2  = (1 - u ) ~  
N 1 , 2  = B 1 , 2  = 2 ~ ( 1  - U) 

2 
N 2 , 2  = B2,2  = U 

N is now (m - 1) x 1 ( (m - 1) x (n - 1) and n = 2) matrix and 
m-1 m-I 

k=l k=l 

We set P to be 

p = [ P1,Z P1,y P1,Z ] 
Rk is now simplified and R is a 1x3 matrix. 
Rk = Qk - (1 - G k ) 2 Q o  - ti:&, 

T 
R = [R" Ily R'] 

rm-1 1 
= 221k(1 - Gk)Rk] 

k=l 

The middle control point is the solution to ( N T N ) P  = R which is defined as 

(24) 
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